Calculate global join count measure for a categorical variable.
Usage
global_jc_perm(
fx,
nb,
wt,
alternative = "greater",
nsim = 499,
allow_zero = FALSE,
...
)
global_jc_test(fx, nb, wt, alternative = "greater", allow_zero = NULL, ...)
tally_jc(fx, nb, wt, allow_zero = TRUE, ...)
Arguments
- fx
a factor or character vector of the same length as nb.
- nb
a neighbor list object for example as created by
st_contiguity()
.- wt
a weights list as created by
st_weights()
.- alternative
default
"two.sided"
. Should be one of"greater"
,"less"
, or"two.sided"
to specify the alternative hypothesis.- nsim
number of simulations to run.
- allow_zero
If
TRUE
, assigns zero as lagged value to zone without neighbors.- ...
additional arguments passed to methods
Details
global_jc_perm()
implements the monte-carlo based join count usingspdep::joincount.mc()
global_jc_test()
implements the traditional BB join count statistic usingspdep::joincount.test()
tally_jc()
calculated join counts for a variablefx
and returns a data.frame usingspdep::joincount.multi()
Examples
geo <- sf::st_geometry(guerry)
nb <- st_contiguity(geo)
wt <- st_weights(nb, style = "B")
fx <- guerry$region
global_jc_perm(fx, nb, wt)
#>
#> Monte-Carlo simulation of join-count statistic
#>
#> data: fx
#> weights: listw
#> number of simulations + 1: 500
#>
#> Join-count statistic for C = 35, rank of observed statistic = 500,
#> p-value = 0.002
#> alternative hypothesis: greater
#> sample estimates:
#> mean of simulation variance of simulation
#> 7.893788 5.781869
#>
#>
#> Monte-Carlo simulation of join-count statistic
#>
#> data: fx
#> weights: listw
#> number of simulations + 1: 500
#>
#> Join-count statistic for E = 29, rank of observed statistic = 500,
#> p-value = 0.002
#> alternative hypothesis: greater
#> sample estimates:
#> mean of simulation variance of simulation
#> 7.875752 5.779712
#>
#>
#> Monte-Carlo simulation of join-count statistic
#>
#> data: fx
#> weights: listw
#> number of simulations + 1: 500
#>
#> Join-count statistic for N = 29, rank of observed statistic = 500,
#> p-value = 0.002
#> alternative hypothesis: greater
#> sample estimates:
#> mean of simulation variance of simulation
#> 8.078156 6.305124
#>
#>
#> Monte-Carlo simulation of join-count statistic
#>
#> data: fx
#> weights: listw
#> number of simulations + 1: 500
#>
#> Join-count statistic for S = 32, rank of observed statistic = 500,
#> p-value = 0.002
#> alternative hypothesis: greater
#> sample estimates:
#> mean of simulation variance of simulation
#> 7.831663 6.296907
#>
#>
#> Monte-Carlo simulation of join-count statistic
#>
#> data: fx
#> weights: listw
#> number of simulations + 1: 500
#>
#> Join-count statistic for W = 31, rank of observed statistic = 500,
#> p-value = 0.002
#> alternative hypothesis: greater
#> sample estimates:
#> mean of simulation variance of simulation
#> 8.098196 6.570659
#>
global_jc_test(fx, nb, wt)
#>
#> Join count test under nonfree sampling
#>
#> data: fx
#> weights: listw
#>
#> Std. deviate for C = 10.886, p-value < 2.2e-16
#> alternative hypothesis: greater
#> sample estimates:
#> Same colour statistic Expectation Variance
#> 35.000000 8.000000 6.151883
#>
#>
#> Join count test under nonfree sampling
#>
#> data: fx
#> weights: listw
#>
#> Std. deviate for E = 8.4667, p-value < 2.2e-16
#> alternative hypothesis: greater
#> sample estimates:
#> Same colour statistic Expectation Variance
#> 29.000000 8.000000 6.151883
#>
#>
#> Join count test under nonfree sampling
#>
#> data: fx
#> weights: listw
#>
#> Std. deviate for N = 8.4667, p-value < 2.2e-16
#> alternative hypothesis: greater
#> sample estimates:
#> Same colour statistic Expectation Variance
#> 29.000000 8.000000 6.151883
#>
#>
#> Join count test under nonfree sampling
#>
#> data: fx
#> weights: listw
#>
#> Std. deviate for S = 9.6763, p-value < 2.2e-16
#> alternative hypothesis: greater
#> sample estimates:
#> Same colour statistic Expectation Variance
#> 32.000000 8.000000 6.151883
#>
#>
#> Join count test under nonfree sampling
#>
#> data: fx
#> weights: listw
#>
#> Std. deviate for W = 9.2731, p-value < 2.2e-16
#> alternative hypothesis: greater
#> sample estimates:
#> Same colour statistic Expectation Variance
#> 31.000000 8.000000 6.151883
#>
tally_jc(fx, nb, wt)
#> joincount expected variance z-value joins
#> C:C 35 8 6.151883 10.885785 C:C
#> E:E 29 8 6.151883 8.466721 E:E
#> N:N 29 8 6.151883 8.466721 N:N
#> S:S 32 8 6.151883 9.676253 S:S
#> W:W 31 8 6.151883 9.273076 W:W
#> E:C 8 17 12.887676 -2.507005 E:C
#> N:C 7 17 12.887676 -2.785561 N:C
#> N:E 8 17 12.887676 -2.507005 N:E
#> S:C 7 17 12.887676 -2.785561 S:C
#> S:E 5 17 12.887676 -3.342673 S:E
#> S:N 0 17 12.887676 -4.735454 S:N
#> W:C 9 17 12.887676 -2.228449 W:C
#> W:E 0 17 12.887676 -4.735454 W:E
#> W:N 3 17 12.887676 -3.899786 W:N
#> W:S 7 17 12.887676 -2.785561 W:S
#> Jtot 54 170 30.848971 -20.885152 Jtot