Calculate the local Gi* statistic.
Usage
local_gstar(x, nb, wt, alternative = "two.sided", ...)
local_gstar_perm(x, nb, wt, nsim = 499, alternative = "two.sided", ...)
Arguments
- x
A numeric vector.
- nb
a neighbor list object for example as created by
st_contiguity()
.- wt
a weights list as created by
st_weights()
.- alternative
default
"two.sided"
. Should be one of"greater"
,"less"
, or"two.sided"
to specify the alternative hypothesis.- ...
methods passed to
spdep::localG()
orspdep::localG_perm()
- nsim
The number of simulations to run.
Value
a data.frame
with columns:
gi
: the observed statistice_gi
: the permutation sample meanvar_gi
: the permutation sample variancep_value
: the p-value using sample mean and standard deviationp_folded_sim
: p-value based on the implementation of Pysal which always assumes a two-sided test taking the minimum possible p-valueskewness
: sample skewnesskurtosis
: sample kurtosis
Examples
nb <- st_contiguity(guerry)
wt <- st_weights(nb)
x <- guerry$crime_pers
res <- local_gstar_perm(x, nb, wt)
head(res)
#> gi_star cluster e_gi var_gi std_dev p_value p_sim
#> 1 1.342359 High 0.01281212 2.828987e-06 0.8669055 0.38599380 0.408
#> 2 2.595578 High 0.01231754 2.534491e-06 2.1922882 0.02835870 0.036
#> 3 2.388872 High 0.01226355 2.355173e-06 2.0995950 0.03576448 0.044
#> 4 -1.848187 Low 0.01098208 2.788616e-06 -1.5970973 0.11024403 0.120
#> 5 -1.209736 Low 0.01146742 3.231416e-06 -1.2477284 0.21213055 0.212
#> 6 -2.034142 Low 0.01097455 1.880792e-06 -1.5710781 0.11616450 0.120
#> p_folded_sim skewness kurtosis
#> 1 0.204 0.11601646 -0.37505144
#> 2 0.018 0.13538275 -0.07345225
#> 3 0.022 0.07291573 -0.24293931
#> 4 0.060 -0.05713113 -0.15455315
#> 5 0.106 0.13602702 -0.40875762
#> 6 0.060 0.05456544 -0.27237752
res <- local_gstar(x, nb, wt)
head(res)
#> [1] 1.342359 2.595578 2.388872 -1.848187 -1.209736 -2.034142